Shopping Cart
Your Cart is Empty
Quantity:
Subtotal
Taxes
Shipping
Total
There was an error with PayPalClick here to try again
CelebrateThank you for your business!You should be receiving an order confirmation from Paypal shortly.Exit Shopping Cart







Bluegrass Doctors of

Physical Therapy, PLLC

Blog

Blog

Why do I still hurt after all these years?

Posted on November 7, 2019 at 11:20 AM

What Is The Cause of Chronic Pain?


To answer this question, we need to understand some facts about the nervous system.

Whatever its initial cause, pain is a function of the nervous system. Say you injure your low back. Nerves around the site of the injury detect it and sends signals that travel on a highway of nerves from the injury to the spinal cord and up to the brain. Once they get to the brain, the brain processes the signals and they register as pain in the low back. The whole highway, from the nerves in the low back to the brain, is the nervous system.

At the same time as the signals travel from the injury to the brain, the whole nervous system becomes reactive. Like a fire detector in a building sounding the alarm in response to fire, the nervous system sets off the alarm bells when in pain. Our muscles become tense forming trigger points. We guard and grimace. We cry and are emotionally alarmed. The nervous system controls all these reactions. We can think of it as the whole nervous system going into ‘red alert.’

This reactivity of the nervous system is all well and good when it comes to acute pain. It helps us to know that something is wrong. Becoming alarmed, we protect against further injury and seek help. Once the original injury or illness heals, everything about the nervous system comes back to normal.

In some people, the nervous system can stay in a persistent state of reactivity even upon healing of the original acute injury or illness. The whole nervous system becomes more and more reactive in a process called wind-up. This reactivity of the nervous system comes to maintain pain in a vicious cycle, over and above the pain of the original condition that started it all. The end state of this process is a highly reactive nervous system called central sensitization.

What is that???

The hallmarks of central sensitization are increasingly widespread pain and increasingly intense pain. Suppose you have an injury to your neck and come to have chronic neck pain. Once central sensitization sets in, you also develop pain in your shoulders and upper back as well as tension headaches. Additionally, the pain becomes so intense that even touch can hurt.

 

Other problems occur as well with central sensitization. Since the nervous system also controls our emotional lives, a highly reactive nervous system leads to anxiety and irritability, poor sleep, fatigue, and eventually depression. These psychological problems are secondarily stressful. The stress adds to the reactivity of the nervous system, making the pain worse. Another vicious cycle results.


The upshot of it all is that chronic pain is pain causing pain by way of central sensitization.

 

Central sensitization is a condition of the nervous system that is associated with the development and maintenance of chronic pain. When central sensitization occurs, the nervous system goes through a process called wind-up and gets regulated in a persistent state of high reactivity. This persistent, or regulated, state of reactivity lowers the threshold for what causes pain and subsequently comes to maintain pain even after the initial injury might have healed.

 

Central sensitization has two main characteristics. Both involve a heightened sensitivity to pain and the sensation of touch. They are called allodynia and hyperalgesia.

Allodynia occurs when a person experiences pain with things that are normally not painful. For example, chronic pain patients often experience pain even with things as simple as touch or massage. In such cases, nerves in the area that was touched sends signals through the nervous system to the brain. Because the nervous system is in a persistent state of heightened reactivity, the brain doesn't produce a mild sensation of touch as it should, given that the stimulus that initiated it was a simple touch or massage. Rather, the brain produces a sensation of pain and discomfort.

Hyperalgesia occurs when a stimulus that is typically painful is perceived as more painful than it should. An example might be when a simple bump, which ordinarily might be mildly painful, sends the chronic pain patient through the roof with pain. Again, when the nervous system is in a persistent state of high reactivity, it produces pain that is amplified.

 

Chronic pain patients can sometimes think they must be going crazy because they know intellectually that touch or simple bumps shouldn’t be as uncomfortable or painful as they experience them. Other times, it’s not the patients themselves who think they are crazy, but their friends and loved ones. Friends and loved ones can witness the chronic pain patient grimacing at the slightest touch or crying out at the simplest bump and they think that the chronic pain patient must really be a hypochondriac or something. After all, the contrast between them and the chronic pain patient is stark: the friends and loved ones can be touched or get a bump and it doesn’t send them through the roof. The difference, though, is that the friends and loved ones don’t have a nervous system that is stuck in a persistent state of heightened reactivity, called central sensitization.


Upper trap and the pain it causes

Posted on June 29, 2019 at 9:30 PM

Upper trapezius and its referral sources

The trapezius commonly contains trigger points, and referred pain from these trigger points bring patients to the office more often than for any other problem. As you can see from the picture, the trapezius is a large kite-shaped muscle, covering much of the back and posterior neck.

There are three main parts to the muscle: the Upper, middle, and lower trapezius, and each part has its own actions and common symptoms.

Common Symptoms

Upper Trapezius

headaches on the temples / "tension" headaches

facial, temple, or jaw pain

pain behind the eye

dizziness or vertigo (in conjunction with the sternocleidomastoid muscle)

severe neck pain

a stiff neck

limited range-of-motion

intolerance to weight on your shoulders

Middle Trapezius

mid-back pain

headaches at the base of your skull

TrP5 refers superficial burning pain close to the spine

TrP6 refers aching pain to the top of the shoulder near the joint

Lower trapezius

mid-back, neck, and/or upper shoulder region pain

possibly referral on the back of the shoulder blade, down the inside of the arm, and into the ring and little fingers (TrP7), very similar to a serratus posterior superior referral pattern

headaches at the base of the skull 

Sime points can refer a deep ache and diffuse tenderness over the top of the shoulder 

Causes and Perpetuation of Trigger Points

one leg shorter than the other

a hemipelvis that is smaller on one side (the part of the pelvis you sit on)

short upper arms (which causes you to lean to one side to use the armrests)

large breasts

fatigue

tensing your shoulders

cradling a phone between your ear and shoulder

a chair without armrests, or the armrests are too high

typing with a keyboard too high

sewing on your lap with your arms unsupported

jogging

sleeping on your front or back with your head rotated to the side for a long period

playing a violin

sports activities with sudden one-sided movements

sitting without a firm back support (sitting slumped)

backpacking

bike-riding

kayaking

any profession or activity that requires you to bend over for extended periods (i.e.. dentists/hygienists, architects/draftsmen, and secretaries/computer users)

bra straps that are too tight (either the shoulder straps or the torso strap)

a purse or daypack that is too heavy

a mis-fitting, heavy coat

carrying a day pack or purse over one shoulder -- even if you think you are not hiking up one shoulder, you are, no matter how light the item

whiplash (a car accident, falling on your head, or any sudden jerk of the head) 10

head-forward posture

walking with a cane that is too long

turning your head to one side for long periods to have a conversation

tight pectoralis major muscles



The Trapezius is a very important shoulder girdle muscle that is often overlooked as the cause of long term chronic pain. 

Do Cranial Bones move?

Posted on May 20, 2019 at 4:25 PM

One of the components of the cranial concept for practitioners who practice cranial manipulative therapy is that the bones of the head move along the sutures. The movement can be described as an expansion and compression that take place much how the rib cage moves during respiration. This idea has been highly controversial since it was first presented to the world over 60 years ago. To this day, there’s plenty of criticism that this concept is based on ‘pseudoscience.’ Many state that there is ‘no research’ supporting this idea. This statement is incorrect. There may not be sufficient evidence at this time supporting this idea. However, there is much more research showing that there the bones of the head can move,  than there is research showing that the bones of the head do not move.

I'd like to to discuss 5 reasons I have found that support the bones of the head do move.


Reason 1: Embryological


Why are there sutures in the head? If you look at a skull, there are sutures throughout the head making each bone identifiable. This may seem insignificant as evidence but during development, there are many bones that form in separate parts and do actually fuse to form one bone. For example, each pelvic bone develops as three separate parts (ischium, ilium, and pubis) that fuse into one bone with no sutures between them. There are many examples of this during development. This even takes place in the head. The occiput forms by the fusion of 4 separate components. This fusion is complete and does not have any sutures between them. There are sutures between the occiput and the bones it articulates with. Clearly the human body would be capable of completely fusing the bones of the head if it intended it to do so. This fusion, however, does not take place or one would be unable to distinguish each separate bone of the skull once fusion had taken place. In addition, skulls can be disarticulated using the expansive properties of rice to separate the bones at the sutures. So if the body is capable of completely fusing the bones of the head, then why does it not do this?


Reason 2: Adaptation

 

Although there are not large amounts of movement in the head, there is some. Proper motion allows the head to be pliable to better absorb the shock of a trauma or changes in intracranial pressure. Part of the purpose of the skull is to encase and protect the brain. If one receives a blunt trauma to the head, the pliability allowed by movement of the bones of the head allows the bones to absorb much of the impact. This would allow the brain to be less affected by the trauma. If the skull fused, then the skull would be very hard like the outer casing of a helmet. A blunt trauma would break the skull easier like an egg shell and the force would be transferred to the brain more strongly. By not fusing, the head can then change and adapt better to changes in intracranial pressure. If a scenario occurs where the pressure in the head changes (such as flying or having a cold), then it would be helpful for the bones to be pliable and expand. That way, when the pressure in the head changes, the effect on the brain is minimized. Therefore, in terms of being able to handle traumas and changes in pressure, it would make sense of the head to be able to expand.

 

Reason 3: Braces


We have evidence that the bones of the head can move all around us. If the bones of the head fuse and could not move, there would be no reason for braces. Braces are based on the idea that the head is pliable and can be reshaped to align teeth.


Reason 4: Motion Testing


Part of the reason that there is so much controversy about whether or not the bones of the head move or not is because most practitioners put their hands on a persons head and palpate the subtle movement taking place under their hands. Others who come along who cannot palpate this motion, then argue that this cannot be felt. Although I can feel this subtle motion, I feel restrictions in the cranial bones by getting a hold of the accessible bones of the head and move them through their range of motion. I compare how one side moves compared to the other. Usually one side moves better than the other. Under normal circumstances each bone has a small range of motion. There is significantly more motion than taking a plastic skull and trying to move it. By understanding where there are restrictions in the sutures, then I can work on freeing them up until both sides feel more symmetrical in their movement. I prove this idea to myself every day that I am at work.


Reason 5: Layout of Sutures


Finally the last piece of evidence I have found is in the sutures themselves. This goes back to anatomy. If one studies the way the motion described in the skull and the anatomy of the sutures, then one could see this idea as being plausible. There are different types of sutures and they articulate differently depending on the area. For example, the frontal bone overlaps the parietal bone medially, but as one moves out further along the coronal suture, there is a transition spot followed by the parietal bone overlapping the frontal bone. The sagittal suture for example, acts more like a hinge and the suture is put together in a way that allows for this type of a function. These are just a few examples although this takes place with the way all the bones articulate with each other. Simply put, the bones of the head act like a 3D puzzle that allows the head to go through its motion. In addition, dural membranes in the head come out externally through the sutures. Evidence for this is that epidural bleeds in the head do not cross suture lines because the dura travels externally at the sutures. The dural membranes inside the head act as a barrier preventing the bones of the head from fusing completely.


We also know now that there are structures inside the skull that we are affecting with cranial manipulative techniques. The tentorium, cranial arterials, CSF, also transmit pain information to our brain. This can be attenuated with cranial technique.  

I will post a video of the skull bones moving in real time! 

Spring has Sprung!!!!!!

Posted on April 19, 2019 at 9:00 AM

This morning I woke up and was greeted with many a sneeze. Most of us living in the Ohio Valley are plagued every spring and fall by seasonal allergies. Sometimes these little nuisances come and go, other times they stay and become a problem. Especially if one has chronic sinus infections and/ OR ear infections. Our dynamic skull requires air resistance to continue to function properly in our day to day lives. If something such as a sinus infection, trauma, ear infection, or other malady is present for a long period of time, our skull does not recieve the normal air resistance it needs to maintain compliance and therefore have normal function. Dysfunctions of the cranial bones can present in many ways, too many to list here, but if someone has had chronic sinusitis they may benefit from cranial manual therapy. Cranial manual therapy are gentle techniques that encourage our skull to become compliant with its dynamics again which allow for normal function of the cranial bones. What this means for a person suffering from chornic sinus infections, is less pain, less clogged sinus cavities and less headaches. Cheers to Spring! :) 



 

Feb 2018 Newsletter

Posted on February 13, 2018 at 1:50 PM

What is Central Sensitization?

Central sensitization syndrome (CSS) is a condition of the nervous system that is associated with the development and maintenance of chronic pain. When central sensitization occurs, the nervous system goes through a process called wind-up and gets regulated in a persistent state of high reactivity. This persistent, or regulated, state of reactivity lowers the threshold for what causes pain and subsequently comes to maintain pain even after the initial injury might have healed.


Central sensitization has two main characteristics. Although these are not essential to diagnose CSS, both involve a heightened sensitivity to pain and the sensation of touch. They are called allodynia and hyperalgesia. Allodynia occurs when a person experiences pain with things that are normally not painful. For example, chronic pain patients often experience pain even with things as simple as touch or massage. In such cases, nerves (called interneurons which are not normally turned on but are on high alert in patients with CSS) in the area that was touched sends signals through the nervous system to the brain. Because the nervous system is in a persistent state of heightened reactivity, the brain doesn't produce a mild sensation of touch as it should. Rather, the brain produces a sensation of pain and discomfort. Hyperalgesia occurs when a stimulus that is typically painful is perceived as more painful than it should. An example might be when a simple bump, which ordinarily might be mildly painful, sends the chronic pain patient through the roof with pain. Again, when the nervous system is in a persistent state of high reactivity, it produces pain that is amplified.



Mindful Breathing

This exercise can be done standing up or sitting down, and pretty much anywhere at any time. If you can sit down in the meditation (lotus) position, that's great, if not, no worries.

Either way, all you have to do is be still and focus on your breath for just one minute.

1 Start by breathing in and out slowly. One breath cycle should last for approximately 6 seconds.

2 Breathe in through your nose and out through your mouth, letting your breath flow effortlessly in and out of your body.

3 Let go of your thoughts. Let go of things you have to do later today or pending projects that need your attention. Simply let thoughts rise and fall of their own accord and be at one with your breath.

4 Purposefully watch your breath, focusing your sense of awareness on its pathway as it enters your body and fills you with life.

5 Then watch with your awareness as it works work its way up and out of your mouth and its energy dissipates into the world.


Throughout the month of February give your mindful breathing a try. Schedule yourself time or on the fly. It may be difficult at first to let go of wandering thoughts and focus on one thing your breath. Try not to get frustrated just relax and try again later or the next day. The more you practice the easier it will become.


CoQ10 and Migraines

Posted on January 31, 2018 at 9:10 AM

An article appearing on January 3, 2018 in Nutritional Neuroscience describes a randomized, double-blind, placebo-controlled trial that resulted in a reduction in migraine duration, frequency and severity, as well as a lower levels of calcitonin gene-related peptide (CGRP) and tumor necrosis factor-alpha (a marker of inflammation) among participants who received daily supplements of coenzyme Q10 (CoQ10)


The trial included 45 women aged 18 to 50 years diagnosed with episodic migraine. In addition to migraine prophylactic medication, 23 participants received 400 milligrams CoQ10 per day and 22 participants received a placebo for three months. Serum CoQ10, CGRP, tumor necrosis factor-alpha (TNF-a), and other factors were measured at the beginning and end of the study.


Migraine severity, duration, and frequency per month were lower at the end of the study among those who were given CoQ10 compared to the placebo. In addition to a rise in serum CoQ10 levels, women who received CoQ10 experienced a reduction in TNF-a and CGRP at the end of the treatment period. “There is a correlation between neurologic inflammation and CGRP release in migraine,” Monireh Dahri and colleagues explain. "Likewise, CGRP transcription can be stimulated by endogenous inflammatory molecules, such as TNF-a, which increases the CGRP promoter activity and actuates MAPK pathway. In our study, reduction of TNF-a in CoQ10 treated group was accompanied with CGRP decrease, which can be explained by the above-mentioned mechanism."


"As migraine patients have higher level of inflammation and have been reported to have CoQ10 deficiency, CoQ10 supplementation may be a beneficial complementary treatment in migraineurs," they suggest.

Headache Behind the Ear? Don't forget the SCM!

Posted on May 16, 2017 at 7:40 AM

What does a headache behind the ear mean? Signs, causes, and treatments


There are several causes of headaches behind the ear. With proper medical treatment, these headaches can be relieved.

A headache behind the ear refers to any pain that originates from that specific area of the head. Though headaches themselves are very common, headaches that occur exclusively behind the ear are fairly unusual.

 

This type of headache pain can have several causes. The cause of the headache behind the ear will determine symptoms and treatment.

 

This article explores the signs and symptoms of headaches behind the ear and details what causes them. It also discusses how they can be treated to relieve pain and the associated symptoms.


Causes

There are several possible causes of a headache behind the ear. These include the following:

 

Occipital neuralgia[woman with a headache behind her ears]

Occipital neuralgia can cause pain behind the ears.

One of the most common causes of a headache behind the ear is a condition called occipital neuralgia.

 

Occipital neuralgia occurs when the occipital nerves, or the nerves that run from the top of the spinal cord up through the scalp, are injured or inflamed.

 

People often mistake sharp pain behind the ear to be the result of a migraine or similar types of headaches, as symptoms can be similar.

 

People who suffer with occipital neuralgia describe the chronic pain as piercing and throbbing. They also describe it as similar to the feeling of receiving an electric shock in the following places:

 

upper neck

back of the head

behind the ears

Occipital neuralgia happens as a result of pressure or irritation to the occipital nerves. It typically only appears on one side of the head.

 

In some cases, the pressure or irritation maybe because of inflammation, overly tight muscles, or an injury. Often, doctors cannot find a cause for occipital neuralgia.

 



Mastoiditis

Mastoiditis is an infection of the mastoid bone, which is the bone directly behind the ear.

 

This infection is much more common in children than adults and generally responds to treatment with no complications.

 

Mastoiditis causes a headache behind the ear as well as fever, discharge from the ear, tiredness, and hearing loss in the affected ear.

 



TMJ

The temporomandibular joints (TMJ) are the ball and socket joints of the jaw. These joints can become inflamed and painful.

 

[pointing out the symptoms of tmj on a model skull]

TMJ can cause aching behind the ear and it usually accompanied by jaw pain.

While most people with TMJ inflammation feel the pain in the jaw and behind the ear, others may just experience a headache behind the ear.

 

TMJ can be caused by:

 

stress

teeth grinding

arthritis

injury

jaw alignment

Symptoms

Symptoms of headaches behind the ear can vary based on the causes.

 

Occipital neuralgia may cause intense pain to the back of the head and/or upper neck. Often, it can start in the neck and work its way up to the back of the head. The episodic pain is like an electric shock to the back of the head and/or neck.

 

Signs of an infection, such as fever or tiredness, often accompany mastoiditis.

 

People experiencing TMJ may sense jaw tightness and pain in addition to a headache behind the ear.

 

Additional symptoms that people who suffer from headaches behind the ear may experience include:

 

pain on one or both sides of the head

sensitivity to light

aching, burning, and throbbing pain

pain behind the eyes

tender scalp

pain with neck movement



Diagnosis

The main causes of headache behind the ear often overlap. It is crucial to get a proper diagnosis so the condition can be treated appropriately.

 

For diagnosis, a doctor will ask a person questions about medical history. Information about any recent head, neck, or spine injuries should be included.

 

After asking questions, a doctor will probably do a physical examination. For this, the doctor will press firmly around the back of the head and base of the skull in an attempt to reproduce the pain through touch. This examination checks for occipital neuralgia, as this condition is sensitive to the touch in most cases.

 

Some additional steps in diagnosis may include a shot to numb the nerve. If a person experiences relief then occipital neuralgia is likely to be the cause of the pain.

 

In more atypical cases, a doctor may order an MRI or blood test to further confirm or rule out other causes of the pain.

 

If occipital neuralgia is ruled out as a possible cause of pain in the initial visit, the doctor will probably check for signs of mastoiditis, including fever and discharge from the ear.

 

For further diagnosis, a doctor may examine the jaw or recommend a visit to a dentist to check for TMJ.

 

Home treatments

Treating the pain is the primary method of dealing with a headache behind the ear, unless a root cause can be determined.

 

There are some at home treatment options for people to try before or in addition to a doctor's care.

 

[woman in yellow sweater sleeping on the couch]

A common way to manage headaches at home is to rest or nap in a quiet room.

Some at home treatments include:

 

rest in a quiet room

over-the-counter anti-inflammatory drugs, such as ibuprofen

massage of neck muscles

apply heat to back of neck

reduce stress

stop teeth grinding

As with any treatment options, a doctor should be consulted before adding medications.

 



Treatment of headaches behind the ear

When under a doctor's care, someone will have a treatment plan for headaches behind the ear that will include managing the pain and treating underlying causes of the pain.

 

Depending on the exact cause of headaches behind the ear, a doctor may prescribe medications, including:

 

prescription muscle relaxants

nerve blocks and steroid shots

physical therapy

antidepressants

antiseizure drugs, such as carbamazepine and gabapentin

antibiotics if mastoiditis is suspected

a night-guard for TMJ

Nerve blocks and steroid shots are often temporary and necessitate repeat visits to the doctor to be reinjected. Furthermore, it may be necessary to administer several shots before the pain is manageable.

 

In rare cases, an operation may be required. Typically, operations are used if pain does not get better with other treatments or keeps recurring.

 


Operations may include:

 

Microvascular decompression: This procedure involves the doctor finding and repositioning the blood vessels that are compressing the nerves.

Occipital nerve stimulation: A neurostimulator delivers several electrical pulses to the occipital nerves. In this case, the electric pulses may help block pain messages to the brain.

No matter the treatments decided upon, it is important to relay to a doctor whether or not they are effective.

 

In some cases, continued pain may indicate that it is the result of another condition, which needs to be treated differently.

 



Outlook

Generally, headaches behind the ear are not the result of a life-threatening condition.

 

In many cases, people experience pain relief when resting and taking medication as prescribed or directed.

 

In most cases, people with a headache behind the ear should see full or nearly full symptom relief with proper diagnosis and treatment.

Bluegrass Doctors of Physical Therapy Picked as Top 16 Providers in Louisville

Posted on November 14, 2016 at 4:35 PM

https://www.expertise.com/ky/louisville/physical-therapists" target="_blank">/www.expertise.com/ky/louisville/physical-therapists


Please Check out the Link Above For more information and how Bluegrass Doctors of Physical Therapy was selected.



Thanks to everyone who has supported us over the last few years. We hope to continue elevating your healthcare experience each and every day!  

Upper Traps role in headaches

Posted on May 15, 2016 at 7:20 PM







Upper trapezius and its referral sources

The trapezius commonly contains trigger points, and referred pain from these trigger points bring patients to the office more often than for any other problem. As you can see from the picture, the trapezius is a large kite-shaped muscle, covering much of the back and posterior neck.

There are three main parts to the muscle: the Upper, middle, and lower trapezius, and each part has its own actions and common symptoms.

Common Symptoms

 

Upper Trapezius

headaches on the temples / "tension" headaches

facial, temple, or jaw pain

pain behind the eye

dizziness or vertigo (in conjunction with the sternocleidomastoid muscle)

severe neck pain

a stiff neck

limited range-of-motion

intolerance to weight on your shoulders

Middle Trapezius

mid-back pain

headaches at the base of your skull

TrP5 refers superficial burning pain close to the spine

TrP6 refers aching pain to the top of the shoulder near the joint

Lower trapezius

mid-back, neck, and/or upper shoulder region pain

possibly referral on the back of the shoulder blade, down the inside of the arm, and into the ring and little fingers (TrP7), very similar to a serratus posterior superior referral pattern

headaches at the base of the skull 5

TrP3 can refer a deep ache and diffuse tenderness over the top of the shoulder 6

 

Causes and Perpetuation of Trigger Points

one leg shorter than the other

a hemipelvis that is smaller on one side (the part of the pelvis you sit on)

short upper arms (which causes you to lean to one side to use the armrests)

large breasts

fatigue

tensing your shoulders

cradling a phone between your ear and shoulder

a chair without armrests, or the armrests are too high

typing with a keyboard too high

sewing on your lap with your arms unsupported

jogging

sleeping on your front or back with your head rotated to the side for a long period

playing a violin

sports activities with sudden one-sided movements

sitting without a firm back support (sitting slumped)

backpacking

bike-riding

kayaking

any profession or activity that requires you to bend over for extended periods (i.e.. dentists/hygienists, architects/draftsmen, and secretaries/computer users)

bra straps that are too tight (either the shoulder straps or the torso strap)

a purse or daypack that is too heavy

a mis-fitting, heavy coat

carrying a day pack or purse over one shoulder -- even if you think you are not hiking up one shoulder, you are, no matter how light the item

whiplash (a car accident, falling on your head, or any sudden jerk of the head) 10

head-forward posture

walking with a cane that is too long

turning your head to one side for long periods to have a conversation

tight pectoralis major muscles

 

Often times, we can address these trigger points in 1-2 sessions and by eliminating these, patients see a drastic redution in neck, and headache pain as well as an immediate increase in AROM. Contact us today to set up an evaluation!!! 502-771-1774